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The aim of this study is to perform the modeling and parametric analysis of dynamic mesh
force in the light of resonance modes. Firstly, dynamic modeling of a differential gearbox has
been performed by using the lumped parameter method. Then, the resonant points from
Campbell diagrams were studied for the first three critical harmonic orders. Furthermore,
two case studies were proposed in order to investigate the impact of radial clearance and
face width on the dynamic mesh force along with resonance. Simultaneously, resonance
identification and elimination were studied for two working conditions. Results show that
the influence of lowering face width of pinions is more effective on mesh force reduction
and resonance elimination as opposed to the first case study by enhancing wheel side mesh
stiffness.
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1. Introduction

It is an irrefutable fact that most vibration problems are associated with the resonance pheno-
menon, and this resonance point appears when dynamic forces in a machine stimulate natural
frequencies in the surrounding structures. In addition, identification and elimination of resonance
problems for different critical speeds is becoming more prominent due to increasing demand of
vibration reduction in electric vehicles. Furthermore, differential gearbox of an electric vehicle
used in this study has a very high input speed and is directly linked with the motor. Due to these
reasons, modeling, design and mesh force parametric analysis of the differential gearbox were
necessary to gain better understanding of the varying dynamics of the geared coupled system.

A large number of scholars have focused on the dynamics of geared rotor systems (Chen et
al., 2019; Liu et al., 2019). In addition, natural frequencies were obtained by using an induction
method in this study (Wu et al., 2018). Investigation of a planetary gearbox casing in ANSYS
was performed using modal analysis and mode shapes of the system were studied in (Walunj
et al., 2015). The study performed in (Kumar and Patil, 2016) depicted the weight calculation
and modal analysis of the gearbox housing by taking into account different materials. Since
the gearbox structure can be influenced by the gear mesh frequency and its harmonics so an
analytical method was presented using vibration response analysis in order to predict the gearbox
noise and vibration (Abouel-Seoud et al., 2013). The modal analysis using a lumped parameter
method and kinetic as well as strain energies of the gearbox transmission system used in a
bucket wheel excavator were studied in (Karray et al., 2017). A coupled marine gearbox model
was built by using truss, spring and tetrahedral elements. Then the natural frequencies of the
gearbox were compared with those obtained from experimental results (Liu et al., 2014). Modal
analysis of the gearbox for reduction of noise and vibration was performed thereby using the
finite element method. However, detailed analysis of the Campbell diagram and mode shapes
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was ignored (Chavan et al., 2013; Nengquan et al., 2011; Yu et al., 2013). Later on, the modal
analysis of a helical gear pair using different helix angle and transmission ratios was conducted
by Korka and Gillich (2017).

Variations of different modal frequencies are analyzed and deformation shapes of wind turbine
gearboxes by considering the impact of gear and bearing mesh stiffness are studied. The findings
in this study are useful in obtaining modal characteristics and monitoring the faults in a gearbox
(Yi et al., 2016). Also the use of state space models and stabilization diagrams are equally
important to investigate structural modes of machinery. So the Kalman filter method was used
to compute the modal contribution for a time invariant damped system (Cara et al., 2013). A
comparison was made between strain and typical experimental modal analysis for the recognition
of modal parameters of a structure. In addition, the accuracy level was analyzed for different
structures using both techniques (Kranjc et al., 2016). The importance of high speed machining
can not be ignored due to its role in production and reduction of manufacturing costs. Therefore,
several researchers worked on identification strategies on the basis of operational modal analysis
for machine tools during machining conditions (Li et al., 2013; Maamar et al., 2017). Root cause
inspection was studied for breakage on blades of a motor fan while mode shapes and natural
frequencies were also investigated by developing a finite element model (Zhou et al., 2017). A
precise and estimated formulations for scaling mode shapes in modal analysis were presented
and a detailed study was done in order to validate formulations on a plate model (López-Aenlle
et al., 2012). Experimental modal analysis was performed for a machine tool spindle system and
modal parameters were proved by complex mode functions (Guo et al., 2015). In short, there
has been a lot of studies on modal analysis but the case studies for resonance elimination by
focusing on dynamic mesh force analysis of machinery is very rare.

This paper conducts combination of the modeling and the dynamic mesh force analysis by
considering critical resonance points in the Campbell diagram. Firstly, the dynamic modeling
is performed by considering the dynamic transmission error. Then, the dynamic mesh force is
gained and resonant modes are located. After that, the parametric study is performed for the
dynamic mesh force analysis in such a way that two case studies are evaluated by using radial
clearance of bearings and face width of pinions. The conducted case studies were never disclosed
in the previous works, and the analysis results can be beneficial not only for altering mode
locations of the dynamic mesh force but also for resonance and vibration reduction in a unique
pattern of gearboxes.

2. Dynamic modeling of differential gearbox

All gears in a differential gearbox are modeled as rigid disks while shaft mass and inertia are
lumped at the gears. Due to complexity of the geared transmission system, the whole gearbox is
mainly divided into the higher, middle and bevel differential or lower stage. The four degrees of
freedom, three translational and one rotational with xi, yi, zi and θi around the axis are consi-
dered for each gear, where (i = 1, 2, . . . , 8) depending upon gears of the coupled system. Hence,
the total degrees of freedom will be 32 for the whole differential gearbox system. βba and βbb
stand for helix angle of base circles of the higher and middle stages, respectively. Whereas αa,
αb and αc denote pressure angle for gears of the higher, middle and lower stages, respectively.
rbi, mi and Ii (i = 1, 2, . . . , 8) present base radius, mass and moment of inertia for the corre-
sponding gears. Tm, Tl1, T12 stand for input torque on the higher stage, loaded torque on the left
and right side of the lower stage, respectively. kij and cij are mesh stiffness and damping, where
(ij) = (1, 2, . . . , 8) varies according to the corresponding gear pairs. δi presents reference cone
angles for the corresponding gears of the lower or bevel differential stage, where (i = 5, 6, 7, 8).
Furthermore, E4r stands for mounting radius of the wheel of the middle stage. lij is for dynamic



Dynamic modeling and parametric analysis of differential gearbox... 75

transmission error, where (i = 1, 3, 5, 6) and j = (2, 4, 7, 8) present corresponding gears. For the
pinion of the higher stage, we have

m1ẍ1 + kb1xx1 + cb1xẋ1 + (k12l12 + c12 l̇12) cosαa cos βba = 0

m1ÿ1 + kb1yy1 + cb1y ẏ1 − (k12l12 + c12 l̇12) sinαa cos βba = 0

m1z̈1 + kb1zz1 + cb1z ż1 − (k12l12 + c12 l̇12) sin βba = 0

I1θ̈1 + (k12l12 + c12 l̇12)rb1 cosβba = Tm

(2.1)

For the wheel of the higher stage

m2ẍ2 + kb2xx2 + cb2xẋ2 − (k12l12 + c12 l̇12) cosαa cos βba = 0

m2ÿ2 + kb2yy2 + cb2y ẏ2 + (k12l12 + c12 l̇12) sinαa cos βba = 0

m2z̈2 + kb2zz2 + cb2z ż2 + (k12l12 + c12 l̇12) sin βba = 0

I2θ̈2 + (k12l12 + c12 l̇12)rb2 cosβba = 0

(2.2)

For the pinion of the middle stage

m3ẍ3 + kb3xx3 + cb3xẋ3 − (k34l34 + c34 l̇34) cosαb cos βbb = 0

m3ÿ3 + kb3yy3 + cb3y ẏ3 − (k34l34 + c34 l̇34) sinαb cos βbb = 0

m3z̈3 + kb3zz3 + cb3z ż3 − (k34l34 + c34 l̇34) sin βbb = 0

I3θ̈3 − (k34l34 + c34 l̇34)rb3 cosβbb + k23θ(θ3 − θ4) + c23θ(θ̇3 − θ̇4) = 0

(2.3)

For the wheel of the middle stage

m4ẍ4 + kb4xx4 + cb4xẋ4 + (k34l34 + c34 l̇34) cosαb cos βbb − k54xl54x − k64xl64x = 0

m4ÿ4 + kb4yy4 + cb4y ẏ4 + (k34l34 + c34 l̇34) sinαb cos βbb + k54zl54z − k64z l64z = 0

m4z̈4 + kb4zz4 + cb4z ż4 + (k34l34 + c34 l̇34) sin βbb − k54yl54y + k64yl64y = 0

I4θ̈4 − (k34l34 + c34 l̇34)rb4 cosβbb + k54xθ4E4r − k64xθ4E4r + k23θ(θ4 − θ3)

+ c23θ(θ̇4 − θ̇3) = 0

(2.4)

For the upper planet of the bevel differential assembly

m5ẍ5 + k54xl54x + c54x l̇54x + (k57l57 + c57 l̇57) cosαc − (k58l58 + c58 l̇58) cosαc = 0

m5ÿ5 + k54yl54y + c54y l̇54y + (k57l57 + c57 l̇57) cos δ5 sinαc

− (k58l58 + c58xl̇58) cos δ5 sinαc = 0

m5z̈5 + k54zl54z + c54z l̇54z + (k57l57 + c57 l̇57) sin δ5 sinαc

+ (k58l58 + c58 l̇58) cos δ5 sinαc = 0

I5θ̈5 − (k57l57 + c57 l̇57)rb5 cosαc − (k58l58 + c58 l̇58)rb5 cosαc = 0

(2.5)

For the lower planet of the bevel differential assembly

m6ẍ6 + k64xl64x + c64x l̇64x − (k67l67 + c67 l̇67) cosαc + (k68l68 + c68 l̇68) cosαc = 0

m6ÿ6 + k64yl64y + c64y l̇64y − (k67l67 + c67 l̇67) cos δ6 sinαc

+ (k68l68 + c68 l̇68) cos δ6 sinαc = 0

m6z̈6 + k64zl64z + c64z l̇64z + (k67l67 + c67 l̇67) sin δ6 sinαc

+ (k68l68 + c68 l̇68) sin δ6 sinαc = 0

I6θ̈6 − (k67l67 + c67 l̇67)rb6 cosαc − (k68l68 + c68 l̇68)rb6 cosαc = 0

(2.6)
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Fig. 1. Dynamic model for the differential gearbox: (a) higher stage, (b) middle stage, (c) bevel
differential assembly or lower stage
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For the left sun gear of the bevel differential assembly

m7ẍ7 + kb7xx7 + cb7xẋ7 − (k57l57 + c57 l̇57) cosαc + (k67l67 + c67 l̇67) cosαc = 0

m7ÿ7 + kb7yy7 + cb7y ẏ7 − (k57l57 + c57 l̇57) cos δ7 sinαc

+ (k67l67 + c67 l̇67) cos δ7 sinαc = 0

m7z̈7 + kb7zz7 + cb7z ż7 + (k57l57 + c57 l̇57) sin δ7 sinαc

+ (k67l67 + c67 l̇67) sin δ7 sinαc = 0

I7θ̈7 − (k57l57 + c57 l̇57)rb7 cosαc − (k67l67 + c67 l̇67)rb7 cosαc = T11

(2.7)

For the right sun gear of the bevel differential assembly

m8ẍ8 + kb8xx8 + cb8xẋ8 + (k58l58 + c58 l̇58) cosαc − (k68l68 + c68 l̇68) cosαc = 0

m8ÿ8 + kb8yy8 + cb8y ẏ8 + (k58l58 + c58 l̇58) cos δ8 sinαc

− (k68l68 + c68 l̇68) cos δ8 sinαc = 0

m8z̈8 + kb8zz8 + cb8z ż8 + (k58l58 + c58 l̇58) sin δ8 sinαc

+ (k68l68 + c68 l̇68) sin δ8 sinαc = 0

I8θ̈8 − (k58l58 + c58 l̇58)rb8 cosαc − (k68l68 + c68 l̇68)rb8 cosαc = T12

(2.8)

where l12 is dynamic transmission error between the pinion and wheel of the higher stage; l34 is
dynamic transmission error for the pinion and wheel of the middle stage. l57 shows dynamic
transmission error for the upper planet and the left sun; while l58 is dynamic transmission
error between the upper planet and the right sun. In the same way, l67 is dynamic transmission
error between the left sun and the lower planet. Whereas, l68 denotes dynamic transmission
error between the right sun and the lower planet. [l54x, l54y, l54z ]

T shows relative displacement
between the upper planet and wheel of the middle stage, while [l64x, l64y, l64z ]

T is for relative
displacement between the lower planet and wheel of the middle stage. The above equations are
organized and expressed using Lagrange’s method whose general dynamic equation of the system
is as follows

Mq̈+Cq̇+Kq = Q (2.9)

whereM, C,K andQ represent the mass, damping, stiffness and excitation matrix, respectively.
q is the coordinate matrix of the coupled system, which is given as

q = [x1, y1, z1, θ1, x2, y2, z2, θ2, x3, y3, z3, θ3, x4, y4, z4, θ4, x5, y5, z5, θ5,

x6, y6, z6, θ6, x7, y7, z7, θ7, x8, y8, z8, θ8]
(2.10)

3. Transmission principle analysis of the differential gearbox

According to the detailed parameters of gears, shafts and bearings, the dynamic model has
been built in MASTA, which is shown in Fig. 2. Whereas, Table 1 and 2 present all the basic
geometrical parameters of the differential gearbox. The working principle of the actual gearbox
used in this study can be explained in such a way that it has an input rotational speed of 6000-
-12000 rpm and is made for the higher stage, middle stage and lower stage. The input power is
induced by an electric motor and transferred to the input shaft followed by an en route to the
pinion and wheel of the higher stage. Then, the power is transited from the pinion of the middle
stage to the lower stage. The higher and middle stage assembly is made of 20CrMnTi (V-MQ)
(GB/T3077) material. Furthermore, a definite kind of six bearings was introduced to connect
the casing with the coupled geared system for analyzing the forced and reaction displacement.
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Fig. 2. Gearbox transmission system of an electric vehicle: (a) transmission outline, (b) 3D model in
MASTA. Note: HS – higher stage; MS – middle stage; LS – lower stage; A,D – radial ball bearings of
the higher stage shaft; B – higher stage shaft; C – pinion of the higher stage; F – wheel of the middle
stage; I – middle stage shaft; G,H – radial ball bearings of the middle stage; N,L – taper roller bearings
of the lower stage shaft; O,M – half axle gear; P – planet; K – housing of the differential assembly;

E – pinion of the middle stage; J – wheel of the lower stage

Table 1. Fundamental geometrical parameters of the differential gearbox

Parameters
Higher stage Middle stage Lower stage
pinion wheel pinion wheel planet sun

No. of teeth 25 60 19 70 10 16

Face width [mm] 27 25 35.5 33 10 10

Module [mm] 2.5 2.5 2.75 2.75 3.75 3.75

Helix angle [◦] 22.5 22.5 19 19 – –

Pressure angle [◦] 20 20 20 20 22.5 22.5

Ratio 2.4 3.6 –

Table 2. Bearing clearance parameters for all stages of the differential gearbox

Stages Types Internal radial clearance Axial clearance

Higher stage shaft Bearing A,D 12.5 µm –

Middle stage shaft Bearing G,H 12.5 µm –

Lower stage shaft Bearing N,L – 5µm

4. Campbell diagram and critical speed analysis

Campbell diagram is a display of resonance problems, which shows the variation of natural
frequencies with rotational speeds. Figures 3 and 4 describe two Campbell diagrams for the first
three orders, where speed of rotation [rpm] on the abscissa and frequency [Hz] on the ordinate
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are plotted. Moreover, this study is conducted for two different working conditions as presented
in Table 3.

Table 3. Load operating parameters for the differential gearbox

Rated speed Torque load Input power load

Condition 1 6000 rev/min 70Nm 44 kW

Condition 2 12000 rev/min 150Nm 188 kW

Figure 3 depicts the first three order resonance points of the first working condition for the
torque load of 70Nm. Figure 4 describes the Campbell diagram for the first three orders in the
second operating condition for the torque load of 150Nm.

Fig. 3. Campbell diagram and natural frequencies for both stages when the torque load is equal
to 70Nm: (a) Campbell diagram, (b) corresponding modes for the coupled gear sets

Fig. 4. Campbell diagram and natural frequencies for both stages when the torque load is equal
to 150Nm: (a) Campbell diagram, (b) corresponding modes for the coupled gear sets



80 N. Ullah et al.

5. Dynamic mesh force and resonant modes analysis

This Section simultaneously elaborates the dynamic mesh force and only those critical modes
which previously showed the resonance in the Campbell diagram. The dynamic mesh force
illustrates how the force acts between two gears in meshing process changes for a variety of
frequencies. Thus, the dynamic mesh force was calculated by using a relation between the mesh
force and the static transmission error (Harris and Kotzalas, 2006). Then, critical resonance
modes were identified for both conditions. Since

f = Dδ (5.1)

where f is the dynamic mesh force, D is dynamic mesh stiffness and δ stands for transmission
error excitation. In addition, the static mesh force was plotted for each gear stage in the case of
both working conditions using the following formula

F =
P

dpw
(5.2)

where F and P stand for the static mesh force [N] and rated power [W]; dp shows the pitch
diameter [mm] while w is for the gear set speed [rad/s]. To find the pitch diameter

dP = dr +m(ha + c) (5.3)

where dr is the root diameter in mm, m is the normal module while ha and c present the gear
tooth height and modulus coefficient, respectively. By using the aforementioned equations, the
static mesh forces came out as 1512N and 5533N for the higher and middle stages for the first
rated condition. While 3225.6 N and 11821 N are the static mesh forces for the higher and middle
stage, gear pairs for the second condition.

Fig. 5. Dynamic mesh force for both stages when the torque load is equal to 70Nm: (a) mode orders for
higher stage, (b) mode orders for the middle stage

Figure 5 delineates the dynamic mesh force for the torque and rated speed of 70Nm and
6000 rev/min. Figure 6 shows the dynamic mesh force for both stages in the second condition
when the torque and rated speed were 150Nm and 12000 rev/min, respectively. Thus, the corre-
sponding resonance identification was performed. Hence, the peaks of resonant modes 40, 60 and
64 in Figs. 5 and 6 show that the natural frequencies corresponding to these modes also occur
when both the pinion and wheel side compliance curves intersect, they are parallel or close to
180◦ with each other. Consequently, most of these modes in Figs. 5 and 6 lie in the dangerous
zone above the static mesh force showing the possibility of higher vibrations. All other resonant
modes, which lie under the static mesh force line in these figures, will not cause unnecessary
vibration to the machinery and thus they are safe modes.
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Fig. 6. Dynamic mesh force for both stages when the torque load is equal to 150Nm: (a) mode orders
for the higher stage, (b) mode orders for the middle stage

6. Case studies for mode characteristics analysis

6.1. Parametric influence of bearings internal clearance

To analyze the dynamic mesh force and corresponding resonant modes further, the impact of
radial internal clearance in the supporting bearings was analyzed in the first case study. This is
done because the corresponding modes can be modified and the resonance can be eliminated by
changing the wheel side compliance or pinion side compliance or both. The relationship between
the pinion and wheel side compliances is

D =
1

Cp + Cw
(6.1)

where Cp and Cw show the pinion and wheel side compliance while D stands for dynamic mesh
stiffness.

It is worth mentioning that there are various types of reduction in radial clearances such as
clearance reduction due to fit between the outer ring and housing as well as reduction due to
fit between the inner ring and shaft. However, the effective bearing radial clearance in this case
study was reduced, which is actually the radial distance through which one of the races may be
displaced relative to the other, from one eccentric extreme position to the diametrically opposite
extreme position. The negative value of the bearing internal clearance (∆ = −3) was also taken
due to the fact that the operating clearance turns to be positive by the impact of bearing load.
Theoretically, the internal clearance caused by the applied load is given by

∆1 = ∆0 + δFO (6.2)

where ∆1 is the apparent clearance at a specific working load, δFO is component deformation,
∆0 is the theoretical radial internal clearance. Generally, the formula for the effective operating
internal clearance is presented as

∆ = ∆f −∆t (6.3)

where∆f is the residual clearance after mounting in the shaft and casing. ∆t shows the clearance
reduction due to temperature difference and ∆ stands for the operating radial internal clearance.

Figure 7 and 8 are upshots of the first case study for reduced effective internal clearance
for both working conditions. As a result of the reduced effective internal clearance, there is a
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very minimal decrease in the dynamic mesh force for the higher stage only, but the middle
stage dynamic mesh force for the torque load of 150Nm decreased more significantly. It is also
evident from Figs. 7 and 8 that the reduction in the effective radial clearance is not so helpful in
eliminating resonant modes especially for the higher stage. In short, resonant modes still occur
in the analysis results for modes 39, 40, and 60. In other words, dynamic mesh force peaks are
appearing, which shows the possibility of vibration for both rated conditions. Hence, it can be
inferred that the effective reduced internal clearance does not have a significant impact on the
mesh force and resonance elimination.

Fig. 7. Effect of the reduced radial clearance on the dynamic mesh force when the torque load is equal
to 70Nm: (a) mode orders for the higher stage, (b) mode orders for the middle stage

Fig. 8. Effect of the reduced radial clearance on the dynamic mesh force when the torque load is equal
to 150Nm: (a) mode orders for the higher stage, (b) mode orders for the middle stage

6.2. Parametric influence of pinions face width

Face width of pinions of the higher and middle stage gear set was modified in this case study
to analyze dynamics of the mesh force by keeping in view the resonant modes. However, at the
same time, face width of the wheels of both stages were kept constant. Generally, the relation
to face width in the line of action during gear meshing can be represented as

b =
Fβx
tan∆

∆ = θskew cosαωt + θslope (6.4)
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where Fβx and b are the gear mesh misalignment and face width, respectively; ∆ is gear mesh
misalignment angle; αωt is working pressure angle; θskew and θslope present gear skew and gear
slope angles, respectively. By using the face width, the gear mesh misalignment can be determi-
ned, which could be further used to find the contact face load factor. Theoretically, the contact
face load factor can be defined as

KHβ =
max(F/b)

Fm/b
(6.5)

where KHβ shows the face load factor; F and Fm stand for the load at an arbitrary position
of the tooth flank and the mean (average) load, respectively (Standard and ISO, 2006). The
contact face load factor is important in gear strength and design ratings not only for typical
but also for special configuration of differential gearboxes. Hence, this approach should be used
when the face load factor is equal or greater than 1, so that the optimum strength for gear stages
could be maintained.

Fig. 9. Effect of the reduced face width on the dynamic mesh force when the torque load is equal
to 70Nm: (a) mode orders for the higher stage, (b) mode orders for the middle stage

Fig. 10. Effect of the reduced face width on the dynamic mesh force when the torque load is equal
to 150Nm: (a) mode orders for the higher stage, (b) mode orders for the middle stage

Figures 9 and 10 are the outcomes of reduced face width for pinions of the corresponding
higher and middle stages, which are analogous to the rated torque loads of 70Nm and 150Nm,
respectively. As soon as the torque load increases, the impact of reduced face width causes
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prompt reduction in the dynamic mesh force and, thus, resonance elimination is more obvious
for the higher stage, see Figs. 9a and 10a. However, the most optimum face width was just
17mm for the higher stage when all the resonant modes fell in the safe region. Yet, various face
width of pinions in the middle stage propelled the dynamic mesh force downward and so the
corresponding resonant modes were in the safe region, which is apparent from Figs. 9b and 10b.
Hence, it can be deduced that reduced face width has a higher impact on the dynamic mesh force
and thus it remained more successful in eliminating resonant modes in both working conditions.

7. Concluding remarks

In this study, dynamic modeling is performed for particular configuration of a differential gear-
box composed of higher and middle stages by considering the relative displacement and dynamic
transmission error. Then, detailed critical modes are investigated by analyzing the Campbell dia-
gram for two operating conditions. For parametric study of the dynamic mesh force and resonant
modes, case studies were performed by considering the radial clearance and face width for the
first three critical orders. The results show that reduction in radial clearance while maintaining
axial clearance for the lower stage as constant remained almost inefficient especially in the higher
stage. However, there was nominal resonance elimination in the middle stage under both working
conditions. By reducing face width of pinions in the second case study while retaining the face
width of wheels as constant proved to be a better approach to resonance elimination and mesh
force reduction. Hence, the dynamic mesh force decreased more significantly for both gear stages
and most of the corresponding modes fell in the safe region for several parameters. In all case
studies, the corresponding modes of the dynamic mesh force for both stages were also prone to
shift their location for a variety of natural frequencies.
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